Принцип работы теплового насоса для отопления дома


Как правильно выбрать тепловой насос?

Тепловой насос — механическое приспособление позволяющее обеспечить перенос тепла от ресурса с низкой потенциальной тепловой энергией (с низкой температурой) до отопительной системы (теплоносителю) с повышенной температурой. Попробуем объяснить это более понятным языком.

Уходят в прошлое времена, когда человек отапливал свое жилище путем сжигания древесины в каминах или печах. На смену приходят многофункциональные котлы длительного горения. В регионах где доступен магистральный газ для отопления применяют эффективное газовое оборудование. В местах, не доступных для газовых магистралей, все активнее используется газгольдер.

Человечество понимает, что сжигать невозобновляемые источники энергии дело не перспективное, ресурсы постепенно истощаются. Ученые не останавливаясь ищут новые способы добычи тепловой энергии и разрабатывают современные механизмы для реализации поставленных задач.

В одном из таких проектов был сконструирован тепловой насос. Действительно, как и большинству генерирующих тепло агрегатов, функционирование теплового насоса не возможно без электрической энергии. Серьезным отличием является то, что электричество не задействовано в нагреве например ТЭНа, как в масляном радиаторе и не замыкает спираль в тепловой пушке. В тепловом насосе нет нагревательных элементов, он не создаёт тепловую энергию, тепловой насос служит лишь переносчиком её из окружающей среды до потребителя (теплоносителя).

Электричество, потребляемое тепловым насосом, затрачивается только на сжатие хладагента и его перекачку обеспечивая циркуляцию. Хладагент выступает в качестве необходимой рабочей среды, именно он перемещает тепло из окружающей среды в отопительную систему и систему горячего водоснабжения. Как подобрать тепловой насос, принцип его работы, а также узнать о плюсах и минусах подобного оборудования нам поможет этот обзор.

Тепловой насос для отопления

Традиционное отопление частного дома по прежнему остается предпочтительным, если в избытке недорогие ресурсы. Вопрос, что делать, когда доступность дешевых источников ограниченна? Альтернативным решением выступает тепловой насос —  опыт эксплуатации более 40 лет в странах Евросоюза, говорит нам о том, что это может быть весьма эффективно.

В Российской Федерации тепловой насос не получил должного распространения. Причиной тому два фактора. Во первых, в избытке нефть, газ, древесина. Во вторых, останавливает высокая цена и отсутствие популяризации. Сведения о тепловых насосах, весьма скудные, принцип их работы не понятный, а о преимуществах информации недостаточно.

В Европейском союзе цены на сжигаемое топливо настолько высоки, что геотермальная система отопления показывает выгоду в эксплуатации. К примеру до 95% домохозяйств в Швеции и Норвегии используют тепловые насосы как основной источник отопления. Международное энергетическое агентство, прогнозирует что тепловые насосы к 2020 году начнут обеспечивать 10 % спроса энергии на отопление в странах организации экономического сотрудничества и развития, а к 2050 году этот показатель достигнет 30%.

Тепловой насос для отопления – принцип действия

Из школьного курса физики, вспоминая второй закон термодинамики, доподлинно известно, что тепло от горячего тела передается холодному без каких бы то ни было механизмов. Фокус в том, как передать тепло в обратном направлении? Для этого нам потребуется теплоноситель и и ряд действий обеспечивающих результат.

Именно эти действия нам и поможет совершить тепловой насос. Затраты электроэнергии на работу теплового насоса пропорционально зависят от разницы значений температур между средами, участвующих в этом процессе.

Вам доводилось дотронуться до черной решетки холодильника сзади? Убедиться в том, что задняя стенка очень горячая может любой желающий. Направив на черную решетку лазерный пирометр, видно что ее температура на поверхности составляет порядка 40°С. Таким образом, инженеры хладогенерирующего оборудования утилизируют изнутри морозильной камеры ненужное тепло.

Известно, что в конце сороковых годов прошлого столетия изобретатель Роберт Вебер обратил внимание на бесполезный обогрев воздуха радиатором холодильника. Изобретатель подумал и подсоединил к нему бойлер косвенного нагрева. В результате Роберт снабдил домочадцев горячей водой в необходимом объеме. Именно тогда, энтузиаст и задумался, каким образом “вывернуть” холодильник на изнанку и трансформировать охладительное устройство в отопительный прибор. Надо признать, у него получилось.

Как работает тепловой насос?

Принцип работы теплового насоса основывается на том, что под землей в любое время года, опустившись ниже отметки уровня промерзания мы наткнемся на температуру выше нуля. Получается, непромерзаемый земельный слой находится прямо у нас под ногами. А что, если использовать его в качестве задней стенки морозильной камеры?

Тогда морозильной камерой можно считать окружающую атмосферу. Разницу температур между ними и используют геотермальные насосы конвертируя в энергию для отопления дома.

Применяя принцип работы холодильного оборудования, для переноса тепла из подземелья в домашнее пространство используется система труб по которым осуществляется циркуляция хладагента. Хладоны Фреона нагреваются подземельным теплом и начинают испаряться. Холодный воздух снаружи его охлаждает, в результате чего фреон конденсируется.

Нагревая тепло чередуя циклы испарения и нагрева тепловой насос заставляет циркулировать хладагент. Компрессор создает давление, заставляя двигаться фреон по трубкам двух теплообменников.

В первом тепловом обменнике фреон испаряется при низком давлении, во время которого происходит поглощение тепла из атмосферы непосредственного окружения. Затем тот же хладагент сжимается компрессором под высоким давлением и перемещается во вторую катушку, где он конденсируется. Затем он выделяет тепло, поглощенное ранее в цикле.

Основную роль в процессе играет повышающий компрессор. Увеличивая давление, фреон конденсируясь выдает больше жара, чем получил от теплой земли. Таким образом, грунтовые плюсовые значения в + 7°С и преобразовывается в комфортные домашние условия + 24°С.

Применяя тепловой насос для отопления, получаем высокую эффективность.

Хочется заметить, что вся конструкция не требует специально выделенной линии электропроводки. Потребляемая мощность сопоставима с расходом энергии бытового электро чайника. Фокус в том, что тепловой насос “добывает” тепловой энергии в четыре раза больше, чем потребляет электричества. На отопление коттеджа в 300 м2, в лютый – 30°С мороз будет затрачено не более 3 кВт.

Впрочем, владельцу геотермального насоса придется заметно раскошелиться в начале. Стоимость оборудования и материалов на подключение составляет не менее 4 500 долларов. Прибавим монтажные работы и бурение, еще столько же, выходит что самая простая система обойдется в 10 тысяч долларов.

Понятно, что электрический котел будет стоить дешевле на порядок. Но платить ежемесячно из расчета 1 кВт на 10 м2 придется в любом случае. Вот и получается, что на 300 кв. метров дома уйдет 30 кВт — в 10 раз больше чем будет потрачено на тепловой насос.

Расчеты по отоплению газом с помощью газового котла, дают примерно тот же порядок цифр — 2000 рублей в месяц, что сравнимо с эксплуатацией теплового насоса. К сожалению не все проживают в газифицированном районе.

Теплового насос, обладает неоспоримым преимуществом. Такую “морозильную камеру наоборот” в летний период можно “вывернуть” на изнанку и легким движением руки — тепловой насос превращается в кондиционер. На улице в жаркие деньки +30°С, а в подземелье царит прохлада. Используя трубки заполненные теплоносителем, насос перенесет холод подземелья в жилище. Далее в работу включается вентилятор, таким образом мы получаем экономную систему охлаждения.

Практика эксплуатации указывает на сроки окупаемости от 3 до 7 лет. Скандинавские страны давно посчитали прибыль и отапливаются этим методом. Ярким примером может служить гигантский тепловой насос в Стокгольме, геотермальное оборудование. Источником тепловой энергии в зимний период и прохлады в летний, служат воды балтийского моря. В полной мере к тепловому насосу относится лозунг: плати сейчас – экономь потом! Экономия становится все больше, в силу того, что энергоносители дорожают.

Тепловой насос. Правда о его эффективности.

К сожалению не все так радужно с эффективностью на сегодняшний день. Одним из главных вопросов, мучающих потребителя остается: покупать или не покупать тепловой насос. Наш совет, тщательно взвешивайте все за и против, скорее всего вариант покупки обычного электрического котла по итогам эксплуатации обойдется дешевле, а установка проще.

Если рассматривать тепловой насос как концепт будущего, как новую идею генерации тепла — однозначно инженерная мысль заслуживает уважения. Геотермальное оборудование работает, его можно потрогать руками, с каждым годом оно становится все более эффективно. Однако, если мы посчитаем, сколько денег мы потратим на его работу, прибавим первоначальные затраты на покупку и монтаж, то скорее всего получим сумму показывающую, что мы потратим на него гораздо больше финансов, чем на любой другой вид тепло генерирующего устройства.

Рассматривая тепловой насос как экономическую систему, когда затратив на его работу 100 рублей, вы получаете тепловой энергии на 300 рублей, не забывайте о том, что за право получения сверхприбыли в 200 рублей, вы заплатили большие деньги. К слову сказать, в том же Евросоюзе, продажи тепловых насосов поддерживаются государственными программами.

Так в Финляндии, ежегодно продается более 60 тысяч тепловых насосов и число продаж растет 5% темпами. Но во первых, экономический эффект применения подобного оборудования там выше по причине дорогой электроэнергии. Стоимость электроэнергии в Финляндии 35 евро центов, в сравнении с Россией – 7 евро центов. Во вторых программа субсидирования предполагает возмещение на покупку теплового насоса в размере 3 000 EURO.

До тех пор, пока существуют низкие цены на газ и электричество, внедрение теплового насоса в качестве основного конкурента остается трудно выполнимой задачей. Массовое потребление станет возможным, только в случае кризисной ситуации с добычей углеводородов или кризиса с генерацией электроэнергии.

Как правильно выбрать тепловой насос

Первый этап.

Расчет требуемого тепла для отопления дома. Чтобы подобрать тепловой насос (ТН), который входит в отопительную систему дома, важно рассчитать потребность тепла. Точный расчет позволит избежать ненужного перерасхода средств, т. к. это ведет к лишним расходам.

Второй этап.

Какой источник тепла выбрать для вашего теплового насоса. Данное решение зависит от многих составляющих, основные из них:

  • Финансовая составляющая. Сюда входит непосредственно стоимость самого оборудования, а также работы по установке геотермального зонда или укладке подземного теплового контура. Это зависит от месторасположения самого участка, а также от ближайшего окружения (водоемы, здания, коммуникации) и геологии.
  • Эксплуатационная составляющая. Основная часть расходов — это функционирование теплового насоса. Эта цифра зависит от режима отопления вашего здания и от выбранного источника тепла.

Третий этап.

Анализ исходных данных для выбора теплового насоса:

  1. Бюджет на предполагаемую систему.
  2. Отопительная система: радиаторы, воздушное отопление, теплый пол.
  3. Площадь участка, которую возможно выделить для укладки теплового коллектора.
  4. Возможно ли бурение на участке.
  5. Геология участка для определения глубины заложения геотермального зонда в случае принятия такого решения.
  6. Требуется ли кондиционирование воздуха в летний период.
  7. Имеется ли воздушное отопление или предполагается ли в будущем.
  8. Капитальная стоимость покупки и монтажа ТН со всеми работами (приблизительная первоначальная оценка).

Разберём всё по порядку

Бюджет на предполагаемую систему

При создании системы отопления на ТН имеется возможность устройство контура «воздух-вода». Капитальные вложения будут минимальными, т. к. не требуется проведения дорогостоящих земляных работ. Но будут высокие затраты на этапе эксплуатации данной системы отопления ввиду низкой эффективности работы.

Если же вы хотите значительно уменьшить эксплуатационные расходы, то вам подойдет установка геотермального насоса. Правда, потребуется провести земляные работы для укладки теплового контура. Также данная система позволит получать «пассивный» холод.

Отопительная система: радиаторы, воздушное отопление, теплый пол

Для увеличения эффективности системы ТН желательно уменьшить разницу между температурой нагреваемой среды и температурой источника тепла. Если вы ещё не выбрали систему отопления, то рекомендуется выбрать теплые полы, позволяющие более эффективно использовать систему ТН.

Площадь участка для установки коллектора критична в случае невозможности бурения и установки геотермального зонда. Тогда вам придется осуществить горизонтальную укладку коллектора, а это потребует пространства примерно в 2 раза больше, чем площадь отапливаемого дома. При этом надо учесть, что данную площадь нельзя использовать под застройки, а только в виде лужайки или газона, чтобы не перекрывать потоки солнечных лучей.

Возможно ли бурение на участке

При возможности проведения бурения на участке (хорошая геология, возможность подъезда, отсутствие подземных коммуникаций) лучшим решением будет установка геотермального зонда. Он обеспечивает стабильный и долгосрочный источник тепла.

Геология участка для определения глубины заложения геотермального зонда, в случае принятия такого решения

После проведения расчета общей глубины бурения необходимо изучить план участка и установить, каким образом обеспечить глубину бурения. На практике глубина одной скважины обычно не превышает 150 м.

Поэтому если, например, расчетная глубина бурения 360 м, то исходя из особенностей участка её можно разбить на 4 скважины по 90 м, или 3 по 120 м, или 6 по 60 м. Но надо учесть, что между ближайшими скважинами расстояние должно быть не меньше 6 м. Стоимость буровых работ прямо пропорционально глубине бурения.

Требуется ли кондиционирование воздуха в летний период

Если в летнее время требуется кондиционер, то очевиден выбора ТН типа «вода-вода» или «грунт-вода», остальные тепловые насосы не готовы эффективно и экономично выполнять функции кондиционирования.

Имеется ли воздушное отопление или предполагается ли в будущем

Возможна интеграция ТН в единую систему воздушного отопления. Данное решение позволит унифицировать инженерные сети.

Капитальная стоимость покупки и монтажа теплового насоса со всеми работами

Приблизительная первоначальная оценка капитальных затрат* на покупку и монтаж зависят от типа теплового насоса:

ТН с подземным коллектором: Оборудование и материалы — 4500 $ Работы — 2500 $

Эксплуатационные расходы — 350 $/год

ТН с зондом: Оборудование и материалы — 4500 $ Работы — 4500 $

Эксплуатационные расходы — 320 $/год

Воздушный ТН: Оборудование и материалы — 6500$ Работы — 400 $

Эксплуатационные расходы — 480 $/год

ТН «вода-вода»: Оборудование и материалы — 4500 $ Работы — 3500 $

Эксплуатационные расходы — 280 $/год

* – ориентировочные, среднерыночные цены. Конечная стоимость зависит от выбранного производителя оборудования, региона производимых работ, стоимости буровых работ и условий площадки и так далее.Примечание сметного отдела

Четвёртый этап. Виды работы

Одиночный. Тепловой насос является единственным источником тепла, обеспечивая 100% потребность в тепле. Работает для рабочих температур не выше 55 °С. Спаренный. ТН и котел работают совместно, что позволяет с помощью котла получать более высокие рабочие температуры.

Моноэнергетический. ТН и электрокотел образуют энергосистему только с одним внешним источником энергии. Это позволяет плавно регулировать электропотребление, но увеличивает нагрузку на вводной автомат.

Выбор теплового насоса

После сбора всех исходных данных и проработки основных технических решений возможно выбрать подходящий тип ТН. Комплектация и выбор поставщика оборудования будет зависеть от ваших финансовых возможностей. Главное, подойти к выбору системы с полным пониманием того, чего вы хотите. Мы поможем вам выбрать и реализовать комфортную систему отопления. В ней можно учесть все нюансы: от климаторегулирующей функции до распределения тепла по зонам дома.

Заключение

Остановив свой выбор на экологической системе отопления с тепловым насосом, можно быть уверенным в завтрашнем дне. Вы получаете полную независимость от тепло снабжающих организаций, мировых цен на нефть и политической ситуации в стране. Единственно, что вам потребуется, это электроэнергия. Но со временем и получение электроэнергии можно перевести на абсолютную автономность с помощью ветряка.

teplogalaxy.ru

Статьи по теме

Ситуация такова, что самым популярным на данный момент способом отапливать жилище является использование котлов отопления – газовых, твердотопливных, дизельных и намного реже – электрических. А вот такие простые и в тоже время высокотехнологичные системы, как тепловые насосы, не получили повсеместного распространения, и очень зря. Для тех, кто любит и умеет просчитывать все наперед, их преимущества очевидны. Тепловые насосы для отопления не сжигают невосполнимых запасов природных ресурсов, что крайне важно не только с точки зрения охраны окружающей среды, но и позволяет экономить на энергоносителях, так как они дорожают с каждым годом. К тому же, с помощью тепловых насосов можно не только отапливать помещение, но и подогревать горячую воду для хозяйственных нужд, и кондиционировать помещение в летний зной.

Принцип действия теплового насоса

Остановимся чуть подробнее на принципе действия теплового насоса. Вспомните, как работает холодильник. Тепло помещенных в него продуктов выкачивается и выбрасывается на радиатор, расположенный на задней стенке. В этом легко убедиться, дотронувшись до него. Примерно такой же принцип у бытовых кондиционеров: они выкачивают тепло из помещения и выбрасывают его на радиатор, расположенный на наружной стене здания.

В основу работы теплового насоса, холодильника и кондиционера положен цикл Карно.

  1. Теплоноситель, двигаясь по источнику низкотемпературного тепла, например, грунту, нагревается на несколько градусов.
  2. Затем он поступает в теплообменник, называемый испаритель. В испарителе теплоноситель отдает накопленное тепло хладагенту. Хладагент – это специальная жидкость, которая превращается в пар при низкой температуре.
  3. Приняв на себя температуру с теплоносителя, нагретый хладагент превращается в пар и поступает в компрессор. В компрессоре происходит сжатие хладагента, т.е. повышение его давления, за счет чего повышается и его температура.
  4. Горячий сжатый хладагент поступает в другой теплообменник, называемый конденсатор. Здесь хладагент отдает свое тепло другому теплоносителю, который предусмотрен в системе отопления дома (вода, антифриз, воздух). При этом хладагент охлаждается и снова превращается в жидкость.
  5. Далее хладагент поступает в испаритель, где нагревается от новой порции нагретого теплоносителя, и цикл повторяется.

Для обеспечения работы теплового насоса необходимо электричество. Но это все равно намного выгоднее, чем использовать только электрообогреватель. Так как электрокотел или электрообогреватель тратит ровно столько же электроэнергии, сколько и выдает тепла. Например, если на обогревателе написана мощность 2 кВт, то он тратит 2 кВт в час и выдает 2 кВт тепла. А тепловой насос выдает тепла в 3 – 7 раз больше, чем тратит электроэнергии. Например, используется 5,5 кВт/час на работу компрессора и насоса, а тепла получается 17 кВт/час. Именно такой высокий КПД и является основным достоинством теплового насоса.

Преимущества и недостатки системы отопления «тепловой насос»

Вокруг тепловых насосов ходит много легенд и заблуждений, несмотря на то, что это не такое уж новаторское и высокотехнологичное изобретение. С помощью тепловых насосов отапливаются все «теплые» штаты в США, практически вся Европа и Япония, где технология отработана практически до идеала и уже давно. Кстати, не стоит думать, что подобное оборудование является чисто иностранной технологией и пришло к нам совсем недавно. Ведь еще в СССР такие агрегаты использовались на экспериментальных объектах. Примером тому служит санаторий «Дружба» в городе Ялта. Помимо футуристической архитектуры, напоминающей «избушку на курьих ножках», этот санаторий славен еще и тем, что еще с  80-х годов 20 века в нем используются тепловые насосы для отопления промышленные. Источником тепла является близлежащее море, а сама насосная станция не только обогревает все помещения санатория, но и обеспечивает горячей водой, греет воду в бассейне и охлаждает в знойный период. Так давайте же попытаемся развеять мифы и определить, имеет ли смысл отапливать жилище таким способом.

Преимущества систем отопления с тепловым насосом:

  • Экономия на энергоносителе. В связи с растущими ценами на газ и дизтопливо очень актуальное преимущество. В графе «ежемесячные расходы» будет значиться только электроэнергия, которой как мы уже писали необходимо намного меньше, чем реально производится тепла. При покупке агрегата необходимо обратить внимание на такой параметр, как коэффициент трансформации тепла «ϕ» (может называться еще коэффициент преобразования тепла, коэффициент трансформации мощности или температур). Он показывает отношение количества тепла на выходе к затрачиваемой энергии. Например, если ϕ=4, то при расходе 1 кВт/час мы получим 4 кВт/час тепловой энергии.
  • Экономия на техобслуживании. Тепловой насос не требует к себе никакого особенного отношения. Расходы на его обслуживание минимальны.
  • Можно устанавливать в любой местности. Источниками низкотемпературного тепла для работы теплового насоса могут служить грунт, вода или воздух. Где бы Вы ни строили дом, даже в скалистой местности, всегда найдется возможность найти «пищу» для агрегата. В местности, удаленной о газовой магистрали, это одна из самых оптимальных систем отопления. И даже в регионах без линий электропередач можно установить бензиновый или дизельный движок для обеспечения работы компрессора.
  • Нет необходимости следить за работой насоса, добавлять топливо, как в случае с твердотопливным или дизельным котлом. Вся система отопления с тепловым насосом автоматизирована.
  • Можно уехать на длительный срок и не бояться, что система замерзнет. При этом можно сэкономить, установив насос на обеспечение в жилом помещении температуры +10 °С.
  • Безопасность для окружающей среды. Для сравнения при использовании традиционных котлов, сжигающих топливо, всегда образуются различные окислы  CO, СO2, NOх, SO2 , PbO2, как следствие вокруг дома на почве оседают фосфорная, азотистая, серная кислоты и бензойные соединения. При работе теплового насоса не выбрасывается ничего. А используемые в системе хладагенты абсолютно безопасны.
  • Сюда же можно отметить сохранение невосполнимых природных ресурсов планеты.
  • Безопасность для человека и имущества. В тепловом насосе ничего не нагревается до такой температуры, чтобы вызвать перегрев или взрыв. К тому же, в нем попросту нечему взрываться. Так что его можно отнести к полностью пожаробезопасным агрегатам.
  • Тепловые насосы успешно работают даже при температуре окружающей среды -15 °С. Так что если кому-то кажется, что такой системой можно обогревать дом только в регионах с теплыми зимами до +5 °С, то они ошибаются.
  • Реверсивность теплового насоса. Неоспоримым преимуществом является универсальность установки, с помощью которой можно и отапливать зимой, и охлаждать летом. В жаркие дни тепловой насос забирает тепло из помещения и направляет его в грунт на хранение, откуда снова возьмет зимой. Обратите внимание, что реверсной способностью обладают не все тепловые насосы, а только некоторые модели.
  • Долговечность. При должном уходе тепловые насосы системы отопления живут от 25 до 50 лет без капитального ремонта, и только раз в 15 – 20 лет потребуется заменить компрессор.

Недостатки систем отопления с тепловым насосом:

  • Большие первоначальные капиталовложения. Помимо того, что на тепловые насосы для отопления цены довольно высоки (от 3000 до 10000 у.е.), так еще дополнительно на обустройство геотермальной системы потребуется затратить не меньше, чем на сам насос. Исключением является воздушный тепловой насос, не требующий дополнительных работ. Окупится тепловой насос не скоро (лет через 5 – 10). Так что ответ на вопрос, использовать или не использовать тепловой насос для отопления, скорее зависит от предпочтений хозяина, его финансовых возможностей и условий строительства. Например, в регионе, где подведение газовой магистрали и подключение к ней стоит столько же, сколько и тепловой насос, имеет смысл отдать предпочтение последнему.

  • В регионах, где температура зимой опускается ниже -15 °С, необходимо использовать дополнительный источник тепла. Это называется бивалентная система отопления, в которой тепловой насос обеспечивает тепло, пока на улице до -20 °С, а когда он не справляется, подключается например, электрообогреватель или газовый котел, или теплогенератор.

  • Наиболее целесообразно использовать тепловой насос в системах с низкотемпературным теплоносителем, таких как система «теплый пол» (+35 °С) и фанкойлы (+35 - +45 °С). Фанкойлы представляют собой вентиляторный конвектор, в котором происходит передача тепла/холода от воды воздуху. Для обустройства такой системы в старом доме потребуется полная перепланировка и перестройка, что повлечет дополнительные затраты. При строительстве нового дома это не является недостатком.
  • Экологичность тепловых насосов, берущих тепло из воды и грунта, несколько относительна. Дело в том, что в процессе работы пространство вокруг труб с теплоносителем охлаждается, а это нарушает устоявшуюся экосистему. Ведь даже в глубине грунта живут анаэробные микроорганизмы, обеспечивающие жизнедеятельность более сложных систем. С другой стороны – по сравнению с добычей газа или нефти ущерб от теплового насоса минимален.

Оцените все «за» и «против» для принятия правильного решения.

Источники тепла для работы теплового насоса

Тепловые насосы берут тепло из тех природных источников, которые накапливают солнечную радиацию в течение теплого периода. В зависимости от источника тепла различаются и тепловые насосы.

Грунт

Грунт – самый стабильный источник тепла, которое накапливается за сезон. На глубине 5 – 7 м температура грунта практически всегда постоянна и равна примерно +5 – +8 °С, а на глубине 10 м – всегда постоянна +10 °С. Способов сбора тепла с грунта два.

Горизонтальный грунтовый коллектор представляет собой уложенную горизонтально трубу, по которой циркулирует теплоноситель. Глубина расположения горизонтального коллектора высчитывается индивидуально в зависимости от условий, иногда это 1,5 – 1,7 м – глубина промерзания грунта, иногда ниже – 2 – 3 м для обеспечения большей стабильности температуры и меньшей разницы, а иногда всего 1 – 1,2 м – здесь грунт начинает быстрее прогреваться весной. Бывают случаи, когда обустраивают двухслойный горизонтальный коллектор.

Трубы горизонтального коллектора могут иметь различный диаметр 25 мм, 32 мм и 40 мм. Форма их раскладки тоже может быть разной – змейка, петля, зигзаг, различные спирали. Расстояние между трубами в змейке должно быть не менее 0,6 м, и обычно составляет 0,8 – 1 м.

Удельный теплосъем с каждого погонного метра трубы зависит от структуры грунта:

  • Песок сухой – 10 Вт/м;
  • Глина сухая – 20 Вт/м;
  • Глина более влажная – 25 Вт/м;
  • Глина с очень большим содержанием воды – 35 Вт/м.

Для отопления дома площадью 100 м2 при условии, что грунт представляет собой влажную глину, понадобится 400 м2 площади участка под коллектор. Это довольно много – 4 – 5 соток. А с учетом того, что на данном участке не должно быть никаких строений и допускается только газон и клумбы с однолетними цветами, то не каждый может себе позволить обустроить горизонтальный коллектор.

По трубам коллектора течет специальная жидкость, ее еще называют «рассол» или антифриз, например, 30% раствор этиленгликоля или пропиленгликоля. «Рассол» собирает на себя тепло грунта и направляется к тепловому насосу, где передает его хладагенту. Остывший «рассол» снова течет в грунтовый коллектор.

Вертикальный грунтовый зонд представляет собой систему труб, заглубленных на 50 – 150 м. Это может быть всего одна U-образная труба, опущенная на большую глубину 80 – 100 м и залитая бетонным раствором. А может быть система U-образных труб, опущенных на 20 м, чтобы собрать энергию с большей площади. Выполнение бурильных работ на глубину 100 – 150 м не только дорого стоит, но и требует получения специального разрешения, именно поэтому часто идут на хитрость и обустраивают несколько зондов небольшой глубины. Расстояние между такими зондами делают 5 – 7 м.

Удельный теплосъем с вертикального коллектора также зависит от породы:

  • Осадочные породы сухие – 20 Вт/м;
  • Осадочные породы, насыщенные водой, и каменистая почва – 50 Вт/м;
  • Каменистая почва с высоким коэффициентом теплопроводности – 70 Вт/м;
  • Подземные (грнутовые) воды – 80 Вт/м.

Площадь под вертикальный коллектор необходима совсем маленькая, но стоимость их обустройства выше, чем у горизонтального коллектора. Достоинством вертикального коллектора также является более стабильная температура и больший теплосъем.

Вода

Использовать воду в качестве источника тепла можно по-разному.

Коллектор на дне открытого незамерзающего водоема – реки, озера, моря – представляет собой трубы с «рассолом», притопленные с помощью груза. За счет высокой температуры теплоносителя этот способ получается самым выгодным и экономичным. Обустроить водный коллектор могут только те, от кого водоем находится не дальше 50 м, иначе теряется эффективность установки. Как Вы понимаете, такие условия есть не у всех. Но не использовать тепловые насосы жителям побережья просто недальновидно и глупо.

Коллектор в канализационных стоках или сбросовой воде после технических установок можно использовать для отопления домов и даже многоэтажек и промышленных предприятий в черте города, а также для приготовления горячей воды. Что с успехом делается в некоторых городах нашей Родины.

Скважинную или грунтовую воду используют реже, чем другие коллекторы. Такая система подразумевает строительство двух скважин, из одной забирается вода, которая передает свое тепло хладагенту в тепловом насосе, а во вторую сбрасывается остывшая вода. Вместо скважины может быть фильтрационный колодец. В любом случае сбросовая скважина должна находиться на расстоянии 15 – 20 м от первой, да еще и ниже по течению (подземные воды тоже имеют свое течение). Данная система довольно сложна в эксплуатации, так как за качеством поступаемой воды необходимо следить – фильтровать ее, и защищать детали теплового насоса (испаритель) от коррозии и загрязнения.

Воздух

Самую простую конструкцию имеет система отопления с воздушным тепловым насосом. Никакого дополнительного коллектора не нужно. Воздух из окружающей среды напрямую поступает к испарителю, где передает свое тепло хладагенту, а тот в свою очередь передает тепло теплоносителю внутри дома. Это может быть воздух для фанкойлов или вода для теплого пола и радиатора.

Затраты на установку воздушного теплового насоса самые минимальные, но зато производительность установки очень зависит от температуры воздуха. В регионах с теплыми зимами (до +5 – 0 °С) это один из самых экономичных источников тепла. А вот если температура воздуха опускается ниже -15 °С производительность падает настолько, что не имеет смысла использовать насос, а выгоднее включить обычный электрообогреватель или котел.

На воздушные тепловые насосы для отопления отзывы весьма противоречивы. Все зависит от региона их использования. Их выгодно использовать в регионах с теплыми зимами, например, в Сочи, где даже не понадобится дублирующий источник тепла на случай сильных морозов. Также можно устанавливать воздушные тепловые насосы в регионах, где относительно сухой воздух и температура зимой до -15 °С. А вот во влажном и холодном климате такие установки страдают от обледенения и обмерзания. Налипающие на вентиляторе сосульки не дают нормально работать всей системе.

Отопление тепловым насосом: стоимость системы и расходы на эксплуатацию

Мощность теплового насоса подбирается в зависимости от тех функций, которые на него будут возложены. Если только отопление, то расчеты можно произвести в специальном калькуляторе, учитывающем тепловые потери здания. Кстати, наилучшие показатели работы теплового насоса при тепловых потерях здания не более 80 – 100 Вт/м2. Для простоты примем, что для отопления дома в 100 м2 с потолками высотой 3 м и теплопотерями 60 Вт/м2 необходим насос мощностью 10 кВт. Для подогрева воды придется взять агрегат с запасом по мощности – 12 или 16 кВт.

Стоимость теплового насоса зависит не только от мощности, но и от надежности и запросов производителя. Например, агрегат мощностью 16 кВт российского производства обойдется в 7000 у.е., а иностранный насос RFM 17 мощностью 17 кВт стоит порядка 13200 у.е. со всем сопутствующим оборудованием, кроме коллектора.

Следующей строкой расходов будет обустройство коллектора. Она тоже зависит от мощности установки. Например, для дома 100 м2, в котором везде установлены теплые полы (100 м2) или радиаторы отопления 80 м2, а также для подогрева воды до +40 °С объемом 150 л/час потребуется выполнить бурение скважин под коллекторы. Такой вертикальный коллектор обойдется в 13000 у.е.

Коллектор на дне водоема обойдется чуть дешевле. При таких же условиях он будет стоить 11000 у.е. Но лучше стоимость монтажа геотермальной системы уточнять в специализирующихся компаниях, она может очень сильно отличаться. Например, обустройство горизонтального коллектора для насоса мощность 17 кВт обойдется всего в 2500 у.е. А для воздушного теплового насоса коллектор не нужен вовсе.

Итого, стоимость теплового насоса 8000 у.е. в среднем, обустройство коллектора 6000 у.е. в среднем.

В ежемесячную стоимость отопления тепловым насосом входят только расходы на электроэнергию. Рассчитать их можно так – на насосе должна быть указана потребляемая мощность. Например, для вышеупомянутого насоса мощностью 17 кВт потребляемая мощность составляет 5,5 кВт/час. Всего отопительная система работает 225 дней в году, т.е. 5400 часов. С учетом того, что тепловой насос и компрессор в нем работают циклически, то расход электроэнергии необходимо уменьшить вдвое. За отопительный сезон будет потрачено 5400ч*5,5кВт/ч/2=14850 кВт.

Умножаем количество затраченных кВт на стоимость энергоносителя в Вашем регионе. Например, 0,05 у.е. за 1 кВт/час. Итого за год будет потрачено 742,5 у.е. За каждый месяц, в котором работал тепловой насос на отопление, приходится по 100 у.е. расходов на электроэнергию. Если же поделить расходы на 12 месяцев, то в месяц получится 60 у.е.

Обратите внимание, что чем меньше потребляемая мощность теплового насоса, тем меньше ежемесячные расходы. Например, есть насосы 17 кВт, которые за год потребляют всего  10000 кВт (расходы 500 у.е.). Также немаловажно, что производительность теплового насоса тем больше, чем меньше разница температур между источником тепла и теплоносителем в системе отопления. Именно поэтому говорят, что выгоднее устанавливать теплый пол и фанкойлы. Хотя стандартные радиаторы отопления с высокотемпературным теплоносителем (+65 – +95 °С) тоже можно устанавливать, но с дополнительным аккумулятором тепла, например, бойлером косвенного нагрева. Для донагрева воды в ГВС также используется бойлер.

Тепловые насосы выгодны при использовании в бивалентных системах. В дополнение к насосу можно установить солнечный коллектор, который сможет полностью обеспечивать насос электроэнергией летом, когда тот будет работать на охлаждение. Для зимней подстраховки можно добавить теплогенератор, который будет догревать воду для ГВС и высокотемпературных радиаторов.

strport.ru

Принцип работы теплового насоса для отопления дома

В условиях растущих цен на топливо многие задумываются о снижении расходов. Учёные ломают голову над получением дешёвой энергии и максимальном использовании сил природы. Именно на простых законах физики и использовании природных стихий построен принцип действия теплового насоса.  

Понятие теплового насоса и принцип его работы

Если сильно упростить структуру насоса, производящего тепло, то получится работа холодильника или кондиционера, но в более глобальном масштабе. Такая тепловая установка не требует топливного котла. Её нужно правильно смонтировать и подключить к источнику электропитания. Это вовсе не обозначает, что насос отапливает дом электричеством — киловатты тратятся на функционирование системы.

 

Устройство насоса

Принцип действия теплового насоса не особо отличается от выбранного вида — тепло забирается во внешней среде и передаётся в дом. Такие установки имеют всего три главных компонента:

  • Зонд, собирающий тепло.
  • Сам тепловой насос, включая компрессор.
  • Система отопления здания с теплообменной камерой.

Первый и последний пункт теплонасосной установки — это трубы и радиаторы. Теплообменный зонд представляет собой большой горизонтальный змеевик, вертикальные трубы или открытый забор воды из естественного водоёма. Суть системы заключается в самом насосе. В нём 6 составляющих:

  • капилляр;
  • хладагент;
  • компрессор;
  • испаритель;
  • конденсатор;
  • терморегулятор.

Принцип работы теплового насоса

Такая установка условно «отбирает» тепло у природных носителей и передаёт их с систему отопления. По такому же принципу работает обычный холодильник — он забирает «лишние» градусы из морозильной камеры и выводит их на воздушный теплообменник на задней стенке. Хотя это лишь один из видов обмена тепловой энергии, связанный с воздухом, есть и другие виды.

Вернуться к содержанию  

Разновидности тепловых насосов

Общий принцип теплонасосных установок заключается в обмене температур между носителями. Тепло первичного источника передаётся системе отопления без использования топлива. Эти источники можно поделить на 3 группы:

  • геотермальные;
  • аэротермические;
  • гидротермальные.

Это три разных стихии — воздух, вода и земля. Именно от этих природных носителей тепловой энергии происходит отопление дома. Помимо отличий в «стихии» установки отличаются и типом монтажа. Они делятся на 2 вида:

  • Открытого типа.
  • Закрытых разновидностей.

Контур геотермального теплового насоса

Каждый из видов теплонасосных установок имеет свои плюсы и минусы. В ряде случаев из-за особенностей монтажа определённые разновидности просто невозможны в конкретном месте. Другие нерентабельны или низкоэффективны в определённых регионах, хотя в других местах они наиболее выгодны.

Вернуться к содержанию

 

Достоинства и недостатки насосов разных видов

Наиболее простой и быстромонтируемый вид теплоустановки — это аэротермический. Теплообмен происходит с воздухом, не требуя монтажа большого количества оборудования. Плюсами являются:

  • лёгкость установки без труб и радиаторов;
  • безопасность и экологичность эксплуатации;
  • возможность использования в летнее время для охлаждения.

Минусами этого типа установок признана её неэффективность в холодных регионах. Уже при 0 градусов Цельсия аэротермическая установка работает с 50% мощностью. При падении температуры до минус 20 С использование воздушного насоса становится нерентабельным. Эта установка не подходит для регионов с сильными морозами, также её монтаж будет не рентабельным в местах с частым безветрием.

Насос вода-вода требует более сложного монтажа и соблюдения обязательного условия — на участке должен быть водоём, непромерзающий зимой до самого дна. Это является недостатком такой установки, в ряде случаев её просто невозможно смонтировать. Преимуществами этой системы являются высокая эффективность, возможность эксплуатации в морозы и более низкая стоимость установки относительно геотермальной.

Схема теплового насоса вода-вода

Установка грунт-вода, использующая в качестве теплоносителя землю, одна из самых сложных в монтаже. Это один из недостатков установки, вне зависимости от горизонтального или вертикального расположения зонда. Помимо этого к минусам можно отнести невозможность использования земли для с/х нужд при горизонтальном змеевике и невозможность самостоятельной установки при вертикальном расположении.

Список плюсов значительно шире:

  • длительный срок работы при разовых вложениях;
  • максимальная эффективность при любой погоде;
  • эксплуатация и на охлаждение, и на обогрев здания;
  • возможность использования в регионах с сильными морозами.

Теплонасосные установки уверенно завоёвывают внимание владельцев частных домов и компаний, имеющих малоэтажные строения. Этот вид отопления позволяет серьёзно снизить расходы на обогрев, снижая стоимость эксплуатации жилых и офисных зданий. Почти все виды установок возможно смонтировать самостоятельно, не прибегая к услугам специалистов. Для этого достаточно лишь приобрести сам насос и расходные материалы, а также ознакомится с особенностями монтажа. Вернуться к содержанию  

Особенности монтажа теплового насоса

Почти все теплонасосные установки допускают возможность самостоятельного монтажа. Возможность самому установить насос при вертикальном расположении зонда исключена — требуется бурение скважины на глубину не менее 100 метров. Во всех остальных случаях достаточно соблюсти простые требования.

Монтаж теплового насоса – это трудозатратное дело

 

Минимальные требования

Система вода-вода не может функционировать без поверхностного водоёма в шаговой доступности при самостоятельной установке. Возможен монтаж силами профессионалов вертикальной системы, если есть источник подземных вод.

Горизонтальный грунтовой насос требует наличия свободного участка земли, незанятой под огород, сад и не имеющей тяжёлых строений. При этом его площадь должна в 2─4 раза превышать размер земли, занятой отапливаемым строением. Система вода-воздух или воздух-воздух требует хотя бы минимальной ветрености и должна быть установлена не более, чем в 20 метрах от здания.

Устройство теплового насоса требует наличия обязательного источника электропитания. При невозможности подключения насоса к стационарному электроснабжению допускается использование бензинового или дизельного генератора. Вернуться к содержанию  

Монтаж воздушного теплового насоса

По сути, эта система представляет собой большой кондиционер в случае принципа воздух-воздух. В этом случае процесс монтажа прост — необходимо выбрать правильное месторасположение и обеспечить вход воздуховода в здание с обязательной установкой фильтров.

При выборе места установки воздухозаборников нужно учесть шум, производимый ими в работе. А также требуется обеспечить возможный отход конденсата для предотвращения обледенения. Воздушный теплонасос наиболее простой в монтаже. Вернуться к содержанию  

Установка водяного горизонтального насоса

Сначала необходимо собрать геоконтур из обычных полимерных труб необходимо при помощи грузил опустить на дно водоёма вместе с испарителем. Допустима установка в водоёмах со сточными или промышленными водами, не повреждающими полимер.

Теплообменник водяного горизонтального теплового насоса

Этот способ более простой, чем монтаж системы вода-грунт, но не всегда возможен из-за отсутствия водоёма. По стоимости оборудования и проводимых работ он входит в ту же ценовую категорию, что и воздушный насос, но имеет более высокий уровень КПД.

Вернуться к содержанию

 

Монтаж горизонтального насоса грунт-вода

Эта система наиболее популярна в частном секторе. Она понятна для самостоятельного монтажа, но требует большого объёма земляных работ. Возможно простое «U-образное» расположение труб под землёй на большое расстояние или же монтаж змеевидной системы на ограниченном участке.

Необходимо учесть, что для получения 1 кВт тепловой энергии требуется 50 кв. м. коллекторов. При змеевидном расположении труб они должны быть удалены друг от друга на расстояние в 0,7─1 м. КПД горизонтальной системы при правильном монтаже достигает 3─5 кВт тепловой энергии на один потраченный киловатт электричества. Вернуться к содержанию  

Вертикальные насосные установки

Самостоятельно смонтировать вертикальный насос невозможно — требуется бурение на глубину не менее 100 м. Для начала необходимо оплатить и получить разрешение на скважину. Такие теплонасосные установки наиболее дорогие, но максимально эффективные.

При монтаже вертикальной системы вода-вода открытого типа с использованием подземных водоёмов возможны дополнительные бонусы. Эта система позволяет одновременно обеспечить здание автономными источниками питьевой воды.

Вернуться к содержанию  

Нюансы расчётов при установке теплового насоса

Поняв, как работает тепловой насос, необходимо правильно рассчитать его мощность. Расчёт теплового насоса кажется простым только на первый взгляд. Лучше всего доверить эту работу специалистам, особенно если здание находиться в регионе с холодным климатом.

Грунтовый теплообменник вертикального теплового насоса

При самостоятельных расчётах применяется формула с такими данными:

  • R — теплопотери здания;
  • V — объёмы дома в м³;
  • T — максимальный перепад температур дом-улица;
  • k — коэффициент теплопроводности здания (СНиП).

Сама формула выглядит так: R=k*V*T. Единицей измерения результата умножения являются ккал. Для перевода их в кВт необходимо произвести деление на 860. Полученный результат покажет максимально необходимую мощность насоса. Вернуться к содержанию  

Случаи низкой рентабельности насоса

Неправильные расчёты могут привести к недостаточной мощности. В тёплых областях это приведёт к монтажу излишне мощной системы, но в морозных регионах не позволит качественно отапливать здание.

Выше сказано, что воздушный насос неэффективен при морозах в минус 20 С. На самом деле сейчас уже существуют модели, способные функционировать при температуре в минус 32 С, оставаясь рентабельными. Пока такие системы реализуются по очень высокой стоимости и их эксплуатация обоснована только при невозможности выбора другого вида отопления.

А также необоснованные затраты будут при монтаже вертикальных систем в тёплых регионах. Их применение будет обоснованным только в очень жарком климате в случае эксплуатации с целью охлаждения при выборе реверсивных моделей насосов. Монтаж вертикальных систем в тёплых регионах для отопления нерентабелен — окупаемость установки с 5─7 возрастёт до 15─20 лет.

Если теплонасосная установка уже запланирована на этапе строительства дома, то стоит заранее рассчитать монтаж системы тёплых полов. Это наиболее выгодная система отопления с использованием тепловых насосов. Подключение к действующей радиаторной системе также эффективно, но менее рентабельно. Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Это поможет развитию сайта. Голосуйте в опросе ниже и оценивайте материал! Исправления и дополнения к статье оставляйте в комментариях.

Вернуться к содержанию

akbinfo.ru

Все правда о тепловых насосах

?

Виктор Борисов (victorborisov) wrote, 2016-09-26 13:01:00 Виктор Борисов victorborisov 2016-09-26 13:01:00 Этой осенью наблюдается обострение в сети по поводу тепловых насосов и их применения для отопления загородных домов и дач. В загородном доме, который я построил своими руками, с 2013 года установлен такой тепловой насос. Это полупромышленный кондиционер, способный эффективно работать на обогрев при уличной температуре до -25 градусов по Цельсию. Он является основным и единственным отопительным прибором в одноэтажном загородном доме общей площадью 72 квадратных метра.

За спиной уже 3 года полноценной эксплуатации теплового насоса по его прямому назначению и сейчас я хочу поделиться своими впечатлениями. Я провел расчеты и был шокирован — такого результата никто не ожидал!

2. Коротко напомню предысторию. Четыре года назад был куплен участок 6 соток в садовом товариществе, на котором, я, своими руками, без привлечения наемной рабочей силы, построил современный энергоэффективный загородный дом. Предназначение дома — вторая квартира, расположенная на природе. Круглогодичная, но не постоянная эксплуатация. Требовалась максимальная автономность в совокупности с простой инженерией. В районе расположения СНТ отсутствует магистральный газ и на него рассчитывать не стоит. Остается привозное твердое или жидкое топливо, но все эти системы требуют сложной инфраструктуры, стоимость возведения и содержания которой сопоставимо с прямым отоплением электричеством. Таким образом выбор уже был частично предопределен — электрическое отопление. Но здесь возникает второй, не менее важный момент: ограничение электрических мощностей в садовом товариществе, а также достаточно высокие тарифы на электроэнергию (на тот момент — не «сельский» тариф). По факту на участок выделено 5 квт электрической мощности. Единственный выход в данной ситуации — использовать тепловой насос, который позволит сэкономить на отоплении примерно в 2,5-3 раза, по сравнению с прямой конвертацией электрической энергии в тепловую.Итак, переходим к тепловым насосам. Они различаются по тому, откуда они забирают тепло и по тому, куда его отдают. Важный момент, известный из законов термодинамики (8 класс средней школы) — тепловой насос не производит тепло, он его переносит. Именно поэтому его КОП (коэффициент преобразования энергии) всегда больше 1 (то есть тепловой насос всегда отдает тепла больше, чем потребляет из сети). Классификация тепловых насосов следующая: «вода - вода», «вода - воздух», «воздух - воздух», «воздух - вода». Под «водой» указываемой в формуле слева подразумевается отбор тепла от жидкого циркулирующего теплоносителя проходящего по трубам находящимся в земле или водоеме. Эффективность таких систем практически не зависит от времени года и температуры окружающего воздуха, но они требуют дорогостоящих и трудоемких земляных работ, а также наличие достаточных свободных площадей под укладку грунтового теплообменника (на котором, впоследствии будет плохо что-либо расти летом, ввиду вымораживания грунта). Под «водой» указываемой в формуле справа подразумевается отоплительный контур, находящийся внутри здания. Это может быть как система радиаторов, так и жидкостные теплые полы. Такая система также потребует сложных инженерных работ внутри здания, но при этом имеет и свои плюсы — с помощью такого теплового насоса можно заодно получить горячую воду в доме.Но самым интересной выглядит категория тепловых насосов класса «воздух — воздух». По сути это самые обычные кондиционеры. Во время работы на обогрев они забирают тепло из уличного воздуха и переносят его на воздушный теплобменник находящийся внутри дома. Несмотря на некоторые недостатки (серийные модели не могут работать при температурах окружающего воздуха ниже -30 градусов по Цельсию), они имеют колоссальное преимущество: такой тепловой насос очень легко установить и его стоимость сопоставима с обычным электрическим отоплением с помощью конвекторов или электрокотла.

3. На основании этих рассуждений был выбран канальный полупромышленный кондиционер Mitsubishi Heavy, модель FDUM71VNX. По состоянию на осень 2013 года, комплект состоящий из двух блоков (внешний и внутренний) стоил 120 тысяч рублей.

4. Внешний блок установлен на фасаде с северной стороны дома, там где меньше всего ветра (это важно).

5. Внутренний блок установлен в холле под потолком, от него с помощью гибких шумоизолированных воздуховодов обеспечена подача горячего воздуха во все жилые помещения внутри дома.

6. Т.к. подача воздуха находится под потолком (организовать подачу горячего воздуха около пола в каменном доме решительно невозможно), то очевидно, что забирать воздух нужно на полу. Для этого с помощью специального короба забор воздуха был опущен на пол в коридоре (во всех межкомнатных дверях также установлены переточные решетки в нижней части). Рабочий режим — 900 кубометров воздуха в час, за счет постоянной и стабильной циркуляции совершенно нет разницы по температуре воздуха между полом и потолком в любой части дома. Если быть точным, то разница составляет 1 градус по Цельсию, это даже меньше, чем при использовании настенных конвекторов под окнами (с ними перепад температуры между полом и потолком может достигать 5 градусов).

7. Кроме того, что внутренний блок кондиционера за счет мощной крыльчатки способен прогонять в режиме рециркуляции большие объемы воздуха по дому, не нужно забывать о том, что для людей наобходим свежий воздух в доме. Поэтому система отопления также выполняет роль системы вентиляции. По отдельному воздушному каналу с улицы в дом подается свежий воздух, который при необходимости подогревается (в холодное время года) с помощью автоматики и канального ТЭНа.

8. Раздача горячего воздуха осуществляется через вот такие решетки, расположенные в жилых комнатах. Также стоит обратить внимание на то, что в доме нет ни одной лампы накаливания и используются исключительно светодиоды (запомните этот момент, это важно).

9. Отработанный «грязный» воздух удаляется из дома через вытяжку в санузле и на кухне. Горячая вода готовится в обычном накопительном водонагревателе. Вообще, это достаточно большая статья расходов, т.к. колодезная вода очень холодна (от +4 до +10 градусов по Цельсию в зависимости от времени года) и кто-то может резонно заметить, что можно использовать солнечные коллекторы для нагрева воды. Да, можно, но стоимость вложений в инфраструктуру такова, что за эти деньги можно греть воду напрямую электричеством в течение 10 лет.

10. А это — «ЦУП». Главный и основной пульт управления воздушным тепловым насосом. У него есть различные таймеры и простейшая автоматика, но мы используем только два режима: вентиляция (в теплое время года) и нагрев (в холодное время года). Построенный дом оказался настолько энергоэффективным, что кондиционер в нём ни разу не использовался по прямому назначению — для охлаждения дома в жару. В этом большую роль сыграло и светодиодное освещение (теплоотдача от которого стремится к нулю) и очень качественное утепление (шутка ли, после обустройства газона на крыше нам даже пришлось этим летом использовать тепловой насос для обогрева дома — в дни, когда среднесуточная температура опускалась ниже +17 градусов по Цельсию). В доме круглогодично поддерживается температура не ниже +16 градусов по Цельсию, независимо от наличия в нём людей (когда в доме люди, то температура устанавливается +22 градуса по Цельсию) и никогда не выключается приточная вентиляция (потому, что лень).

11. Счетчик технического учета электроэнергии был установлен осенью 2013 года. То есть ровно 3 года назад. Нетрудно подсчитать, что среднегодовое потребление электрической энергии составляет 7000 квтч (на самом деле сейчас эта цифра немного меньше, т.к. в первый год расход был большим из-за использования осушителей во время отделочных работ).

12. В заводской комплектации кондиционер способен работать на обогрев при температуре окружающего воздуха не ниже -20 градусов по Цельсию. Для работы при более низких температурах требуется доработка (на самом деле она актуальна при эксплуатации даже при температуре -10, если на улице высокая влажность) — установка греющего кабеля в дренажный поддон. Это необходимо для того, чтобы после цикла разморозки внешнего блока вода в жидком состоянии успела покинуть дренажный поддон. Если она не успеет это сделать, то в поддоне будет намерзать лед, который впоследствии выдавит раму с вентилятором, что, вероятно, приведет к обламыванию лопастей на нём (можете посмотреть фотографии обломанных лопастей в интернете, я сам с этим чуть не столкнулся т.к. положил греющий кабель не сразу).

13. Как я уже упоминал выше — в доме везде используется исключительно светодиодное освещение. Это важно, когда речь заходит о кондиционировании помещения. Возьмем стандартную комнату, в которой расположено 2 светильника, по 4 лампы в каждом. Если это лампы накаливания мощностью 50 ватт, то суммарно они потребляют 400 ватт, в то время как светодиодные лампы будут потреблять менее 40 ватт. А вся энергия, как мы знаем из курса физики, в конечном итоге все равно превращается в тепловую. То есть освещение на лампах накаливания это такой неплохой обогреватель средней мощности.

14. Теперь поговорим о том, как работает тепловой насос. Всё, что он делает — переносит тепловую энергию из одного места в другое. Именно по такому принципу работают и холодильники. Они переносят тепло из холодильной камеры в помещение.

Есть такая хорошая загадка: Как изменится температура в комнате, если в ней оставить включенный в розетку холодильник с открытой дверцей? Правильный ответ — температура в комнате будет расти. Для просты понимания это объяснить можно так: комната это замкнутый контур, в него по проводам поступает электричество. Как мы знаем энергия в конечном итоге превращается в тепловую. Именно поэтому температура в комнате и будет расти, ведь в замкнутый контур извне поступает электричество и в нём же остается.

Немного теории. Теплота это форма энергии, которая передается между двумя системами из-за разницы температур. При этом тепловая энергия переходит из места с высокой температурой к месту с более низкой температурой. Это естественный процесс. Перенос тепла может осуществляться за счет теплопроводности, теплового излучения или путём конвекции.Существует три классических агрегатных состояния вещества, преобразование между которыми осуществляется в результате изменения температуры или давления: твердое, жидкое, газообразное.Для изменения агрегатного состояния тело должно либо получить, либо отдать тепловую энергию.• При плавлении (переход из твердого состояния в жидкое) поглощается тепловая энергия.• При испарении (переход из жидкого состояния в газообразное) поглощается тепловая энергия.• При конденсации (переход из газообразного состояния в жидкое) выделяется тепловая энергия.• При кристаллизации (переход из жидкого состояния в твердое) выделяется тепловая энергия.Тепловой насос использует в работе два переходных режима: испарение и конденсацию, то есть оперирует веществом, находящимся либо в жидком, либо в газообразном состоянии.

15. В качестве рабочего тела в контуре теплового насоса используется хладагент R410a. Это фторуглеводород, закипающий (переход из жидкого состояния в газообразное) при очень низкой температуре. А именно, при температуре — 48,5 градусов по Цельсию. То есть, если обычная вода при нормальном атмосферном давлении кипит при температуре +100 градусов по Цельсию, то фреон R410a кипит при температуре почти на 150 градусов ниже. Более того, при сильно отрицательной температуре.

Именно это свойство хладагента используется в тепловом насосе. Путем целеправленного измерения давления и температуры ему можно придать необходимые свойства. Либо это будет испарение при температуре окружающей с поглощением тепла, либо конденсации при температуре окружающей среды с выделением тепла.

16. Вот как выглядит контур циркуляции теплового насоса. Его основные компоненты: компрессор, испаритель, расширительный клапан и конденсатор. Хладагент циркулирует в замкнутом контуре теплового насоса и попеременно меняет свое агрегатное состояние с жидкого на газообразное и обратно. Именно хладагент передает и переносит тепло. Давление в контуре всегда избыточно по сравнению с атмосферным.

Как это работает?Компрессор всасывает холодный газообразный хладагент низкого давления поступающий из испарителя. Компрессор сжимает его под высоким давлением. Температура повышается (тепло от работы компрессора также добавляется к хладагенту). На этом этапе мы получается газообразный хладагент высокого давления и высокой температуры.

В таком виде он поступает в конденсатор, обдуваемый более холодным воздухом. Перегретый хладагент отдает свое тепло воздуху и конденсируется. На этом этапе хладагент находится в жидком состоянии, под высоким давлением и со средней температурой.Далее хладагент поступает в расширительный клапан. В нём происходит резкое снижение давления, вследствие расширения объема, который занимает хладагент. Уменьшение давления приводит к частичному испарению хладагента, что в свою очередь снижает температуру хладагента ниже температуры окружающей среды.В испарителе давление хладагента продолжает снижаться, он еще сильнее испаряется, а необходимое для этого процесса тепло отбирается от более теплого наружного воздуха, который при этом охлаждается. Полностью газообразный хладагент снова поступает в компрессор и цикл замыкается.

17. Попробую еще раз объяснить попроще. Хладагент кипит уже при температуре -48,5 градусов по Цельсию. То есть, условно говоря при любой более высокой температуре окружающей среды он будет иметь избыточное давление и в процессе испарения забирать тепло из окружающей среды (то есть уличного воздуха). Есть хладагенты используемые в низкотемпературных холодильниках, у них температура кипения еще ниже, вплоть до -100 градусов по Цельсию, но его не получится использовать для работы теплового насоса на охлаждение помещения в жару из-за очень высокого давления при высоких температурах окружающей среды. Хладагент R410a это некий баланс между возможностью работы кондиционера как на нагрев, так и охлаждение.

Вот, кстати, хороший документальный фильм снятый в СССР и рассказывающий о том, как устроен тепловой насос. Рекомендую.

18. Любой ли кондиционер можно использовать для работы на обогрев? Нет, не любой. Хотя на фреоне R410a и работают почти все современные кондиционеры, не менее важны и другие характеристики. Во-первых кондиционер должен иметь четырехходовой клапан, позволяющий так сказать переключиться на «реверс», а именно поменять местами конденсатор и испаритель. Во-вторых, обратите внимание, что компрессор (он расположен справа снизу) находится в теплоизолированном кохуже и имеет электрический подогрев картера. Это нужно для того, чтобы всегда поддерживать положительную температуру масла в компрессоре. По факту, при температуре окружающей среды ниже +5 градусов по Цельсию даже в выключенном состоянии кондиционер потребляет 70 ватт электрической энергии. Второй, важнейший момент — кондиционер должен быть инверторным. То есть и компрессор и электромотор крыльчатки должны иметь возможность изменять производительность в процессе работы. Именно это позволяет тепловому насосу эффективно работать на обогрев при наружной температуре ниже -5 градусов по Цельсию.

19. Как мы знаем, на теплообменнике внешнего блока, который является испарителем во время работы на обогрев, происходит интенсивное испарение хладагента с поглощением тепла из окружающей среды. Но в уличном воздухе находятся пары воды в газообразном состоянии, которые конденсируются, а то и кристаллизуются на испарителе из-за резкого снижения температуры (уличный воздух отдает свою теплоту хладагенту). А интенсивное обмерзание теплообменника приведет к снижению эффективности теплоосъема. То есть, по мере снижения температуры окружающей среды необходимо «притормозить» и компрессор и крыльчатку, чтобы обеспечить наиболее эффективный теплосъем на поверхности испарителя.

Идеальный тепловой насос работающий только на обогрев должен иметь площадь поверхности внешнего теплообменника (испарителя) в несколько раз превышающую площадь поверхности внутреннего теплообменника (конденсатора). На практике мы возращаемся к тому самому балансу, что тепловой насос должен уметь работать как на обогрев, так и охлаждение.

20. Слева можно видеть практически полностью покрытый инеем внешний теплообменник, кроме двух секций. В верхней, не замерзшей, секции фреон имеет еще достаточно высокое давление, что не позволяет ему эффективно испаряться с поглощением тепла из окружающей среды, в нижней же секции он уже перегрет и не может больше забирать тепло извне. А фотография справа дает ответ на вопрос почему внешний блок кондиционера был установлен на фасаде, а не спрятан от глаз на плоской кровле. Именно из-за воды, которую нужно отводить от дренажного поддона в холодное время года. Отводить эту воду с кровли было бы значительно сложнее, чем с отмостки.Как я уже писал, во время работы на обогрев при отрицательной температуре на улице испаритель на внешнем блоке обмерзает, на нём кристаллизуется вода из уличного воздуха. Эффективность обмерзшего испарителя заметно снижается, но электроника кондиционера в автоматическом режиме контролирует эффективность теплосъема и периодически переключает тепловой насос в режим разморозки. По сути режим разморозки это прямой режим кондиционирования. То есть из помещения забирается тепло и переносится на внешний, обмерзший теплообменник, что растопить на нём лед. В это время вентилятор внутреннего блока работает на минимальной скорости, а из воздуховодов внутри дома поступает прохладный воздух. Цикл разморозки обычно длится 5 минут и происходит каждые 45-50 минут. Ввиду высокой тепловой инерционности дома, никакого дискомфорта во время разморозки не ощущается.

21. Вот таблица теплопроизводительности данной модели теплового насоса. Напомню, что номинальное потребление энергии составляет чуть более 2 кВт (ток 10А), а теплоотдача колеблется от 4 кВт при -20 градусах на улице, до 8 кВт при уличной температуре +7 градусов. То есть коэффициент конвертации составляет от 2 до 4. Именно во сколько раз тепловой насос позволяет экономить энергию по сравнению с прямым преобразованием электрической энергии в тепловую.

Практика показывает, что средний коэффициент конвертации с учетом потерь в самые холодные зимние месяцы в Московской области составляет 2,5. Но не забывайте про межсезонье и даже лето. А как я уже писал выше, если у вас энергоэффективный, хорошо теплоизолированный дом, без паразитных источников тепла, то даже летом солнце не способно его прогреть до комфортной температуры +22 градуса и в холодние летние дни потребуется также использовать тепловой насос для обогрева. А при уличной температуре более +10 градусов мы получим пятикратную (!) экономию электроэнергии по сравнению с электрическими конвекторами.Кстати, есть еще один интересный момент. Ресурс у кондиционера при работе на обогрев в разы выше, чем при работе на охлаждение.

22. Осенью прошлого года я установил счетчик электрической энергии Smappee, который позволяет вести статистику энергопотребления по месячно и предоставляет более менее удобную визуализацию проведенных измерений.

23. Smappee был установлен ровно год назад, в последних числах сентября 2015 года. Он также пытается показать стоимость электрической энергии, но делает это исходя из заданных вручную тарифов. А с ними есть важный момент — как известно, у нас повышают цены на электроэнергию 2 раза в год. То есть за представленный период измерений тарифы менялись 3 раза. Поэтому не будем обращать внимание на стоимость, а подсчитаем количество потребленной энергии.

На самом деле с визуализацией графиков потребления у Smappee есть проблемы. Например, самый короткий столбец слева это потребление за сентябрь 2015 года (117 квтч), т.к. у разработчиков что-то пошло не так и на экране за год почему-то 11, а не 12 столбцов. Но суммарные цифры потребления подсчитаны безошибочно.

А именно, 1957 квтч за 4 месяца (включая сентябрь) в конце 2015 года и 4623 квтч за весь 2016 год с января по сентябрь включительно. То есть суммарно было израсходовано 6580 квтч на ВСЁ жизнеообеспечение загородного дома, который круглогодично отапливался, независимо от нахождения в нём людей. Напомню, что летом этого года впервые пришлось использовать тепловой насос для обогрева, а на охлаждение летом он не работал ни разу за все 3 года эксплуатации (кроме автоматических циклов разморозки, разумеется). В рублях, по текущим тарифам в Московской области это менее 20 тысяч рублей в год или около 1700 рублей в месяц. Напомню, что в эту сумму входит: отопление, вентиляция, нагрев воды, плита, холодильник, освещение, электроника и техника. То есть это фактически в 2 раза дешевле, чем ежемесячная плата за квартиру в Москве аналогичной площади (разумеется без учета взносов на содержание, а также сборов на капитальный ремонт).

24. А теперь давайте подсчитаем сколько же денег позволил сэкономить тепловой насос в моём случае. Сравнивать будем электрическим отоплением, на примере электрокотла и радиаторов. Считать буду по докризисным ценам, которые были на момент установки теплового насоса осенью 2013 года. Сейчас тепловые насосы подорожали из-за обвала курса рубля, а техника вся импортная (лидеры по производству тепловых насосов — японцы).

Электрическое отопление:

Электрический котел - 50 тыс рублейТрубы, радиаторы, фитинги и т.д. - еще 30 тыс. рублей. Итого материалов на 80 тысяч рублей.

Тепловой насос:

Канальный кондиционер MHI FDUM71VNXVF (внешний и внутренний блок) - 120 тыс. рублей. Воздуховоды, адаптеры, теплоизоляция и т.д. - еще 30 тыс. рублей. Итого материалов на 150 тысяч рублей.Установка своими руками, но в обоих случаях по времени это примерно одинаково. Итого «переплата» за тепловой насос по сравнению с электрокотлом: 70 тысяч рублей. Но это не всё. Воздушное отопление с помощью теплового насоса это заодно кондиционер в теплое время года (то есть кондиционер все равно нужно ставить, так ведь? значит добавим еще минимум 40 тысяч рублей) и вентиляция (обязательна в современных герметичных домах, еще минимум 20 тысяч рублей).

Что имеем? «Переплата» в комплексе составляет всего 10 тысяч рублей. Это еще только на стадии ввода системы отопления в эксплуатацию.

А дальше начинается эксплутация. Как я уже писал выше, в самые холодные зимние месяцы коэффициент преобразования составляет 2,5, а в межсезонье и летом можно принять его равным 3,5-4. Возьмем усредненный годовой СОР равный 3. Напомню, что за год в доме расходуется 6500 квтч электрической энергии. Это суммарное потребление на все электрические приборы. Возьмем для простоты расчетов по минимуму, что тепловой насос потребляет из этой суммы всего лишь половину. То есть 3000 квтч. При этом в среднем за год он отдал 9000 квтч тепловой энергии (6000 квтч «притащил» с улицы).

Переведем перенесенную энергию в рубли, предположив, что 1 квтч электрической энергии стоит 4,5 рубля (усредненный дневной/ночной тариф в Московской области). Получаем 27000 рублей экономии, по сравнению с электрическим отоплением только за первый год эксплуатации. Вспомним, что разница на стадии ввода системы в эксплуатацию составляла всего 10 тысяч рублей. То есть уже за первый год эксплуатации тепловой насос СЭКОНОМИЛ мне 17 тысяч рублей. То есть он окупился в первый же год эксплуатации. При этом напомню, что это не постоянное проживание, при котором экономия была бы еще больше!Но не забываем про кондиционер, который конкретно в моем случае не потребовался ввиду того, что построенный мною дом оказался переутепленным (хотя и используется однослойная стена из газобетона без дополнительного утепления) и он просто не нагревается летом на солнце. То есть скинем 40 тысяч рублей из сметы. Что имеем? ЭКОНОМИТЬ на тепловом насосе в таком случае я стал не с первого года эксплуатации, а со второго. Не велика разница-то. Но если мы возьмем тепловой насос класса «вода-вода» или даже «воздух-вода», то цифры в смете будут совершенно иными. Именно поэтому тепловой насос «воздух-воздух» это лучшее соотношение цена/эффективность на рынке.

25. И напоследок несколько слов про электрические отопительные приборы. Меня замучали вопросами о всяких инфракрасных обогревателях и нано-технологиях не сжигающих кислород. Отвечу коротко и по делу. Любой электрический обогреватель имеет КПД 100%, то есть вся электрическая энергия переходит в тепловую. На самом деле это касается любых электрических приборов, даже электрическая лампочка дает тепло ровно в том количестве, в котором она его получила из розетки. Если же говорить про инфракрасные обогреватели, то их преимущество заключается в том, что они греют предметы, а не воздух. Поэтому самое разумное применение для них — обогрев на открытых верандах в кафе и на автобусных остановках. Там, где есть необходимость передать тепло напрямую предметам/людям, минуя нагрев воздуха. Аналогичная история про сжигание кислорода. Если где-то в рекламном проспекте вы видите эту фразу, знайте — производитель держит покупателя за лоха. Горение это реакция окисления, а кислород это окислитель, то есть он сам себя сжечь не может. То есть это все бред дилетантов, прогулявших уроки физики в школе.

26. Еще одним вариантом экономии энергии при электрическом отоплении (не важно, прямой конвертацией или с помощью теплового насоса) является использование теплоемкости ограждающих конструкций (или же специального теплоаккумулятора) для накопления тепла при использовании дешевого ночного электрического тарифа. Именно с этим я и буду экспериментировать этой зимой. По моим предварительным расчетам (с учетом того, что в ближайший месяц я буду платить по сельскому тарифу на электроэнергию, т.к. строение уже зарегистрировано как жилой дом), даже несмотря на рост тарифов на электроэнергию, в следующем году я заплачу за содержание дома менее 20 тысяч рублей (за всю потребленную электрическую энергию на отопление, нагрев воды, вентиляцию и технику с учетом того, что в доме круглогодично поддерживается температура примерно 18-20 градусов тепла, независимо от того есть ли в нём люди).

Что в итоге? Тепловой насос в виде низкотемпературного кондиционера класса «воздух-воздух» это самый простой и доступный способ экономии на отоплении, что вдвойне может быть актуально при существовании лимита электрических мощностей. Я полностью доволен установленной отопительной системой и не испытываю какого-либо дискомфорта от её эксплуатации. В условиях Московской области использование воздушного теплового насоса полностью себя оправдывает и позволяет окупить инвестиции не позднее, чем через 2-3 года.

Кстати, не забывайте что у меня еще есть Instagram, в котором я публикую ход работ практически в реальном времени — https://www.instagram.com/victorprofessor

Все материалы про строительство загородного дома своими руками в хронологическом порядке можно посмотреть здесь.

Tags: делюсь опытом, строительство, тепловой насос, энергоэффективность
  • Газобетон это не только конструционно-теплоизоляционный материал из которого можно построить энергоэффективный дом, но ещё и отделочный материал. В…

  • Бризерами Тион мы пользуемся 5 лет. Я уже неоднократно писал, что это самое важное устройство, напрямую влияющее на качество жизни в городской…

  • Моему загородному дому уже 7 лет. Решения, которые были использованы при его строительстве, показали свою эффективность, а концепция загородного…

  • Современное энергоэффективное строительство невозможно без использования высокоэффективных вентиляционных систем, которые позволяют сократить…

  • В начале этого года в гости заезжала редакция YouTube канала Open Village. Коротко рассказал о том, какие материалы я использовал при строительстве…

  • Всем известно что вода и воздух — основа жизни на земле. Поэтому очень важно пить чистую воду и дышать чистым свежим воздухом. Про то, как…

  • Пришло время для очередного отчёта о том, как мы эксплуатируем наш энергоэффективный дом площадью 72 м2, который я самостоятельно построил в 2012…

  • Я уже не первый год рассказываю о том, что газобетон — это лучший строительный материал для загородного дома. При этом из газобетона выпускаются не…

  • Ожирение — серьёзная проблема с которой в наше время сталкивается большая часть людей на планете. Чтобы похудеть и поддерживать себя в форме…

victorborisov.livejournal.com


Смотрите также

  • Сколько можно заработать на бирже
  • Средний дневной заработок в больничном листе с учетом стажа или нет
  • Опционы что это такое и как на них заработать
  • Фриланс по новому уникальный способ заработка
  • Заработок в контакте на группе
  • Как заработать на сервере
  • Можно ли заработать
  • Работа на дому резюме удаленная
  • Как заработать на дедиках
  • Как работает ферма по заработку биткоинов
  • Как заработать на рутубе